

## GE Global Research

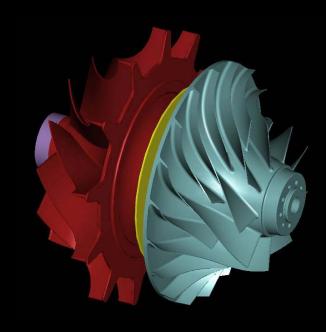
Microturbine Developments at GE

Advanced Integrated Microturbine System

Karl Sheldon AIMS Core Designer

June 16th, 2003






## Overview

- ✓ Project Objective
- ✓ Project Team

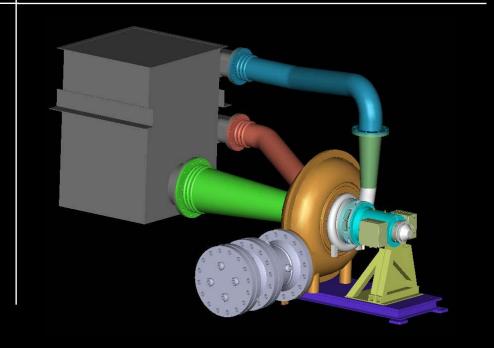
## Design & Procurement

- ✓ Concept
- ✓ Engine Core
- ✓ Power Electronics
- ✓ Controls
- Summary





#### **OBJECTIVE**


The objective of the AIMS program is to develop the next generation microturbine system that will advance the current generation system into a more efficient, cost effective, and environmentally friendly system. The resulting system will be designed such that it addresses both the current and emerging distributed generation markets.

#### PROJECT TEAM

GE Global Research
GE Power Systems (GEPS)
GE Industrial Systems (GEIS)
Concepts NREC
Turbo Genset Company
Kyocera Industrial Ceramics Corp.
Onsite Energy Corporation
Oak Ridge National Laboratory

### CTQ'S

- 40% Efficient Design
- 175 kW Output with growth to +250 kW
- ≤ 10 ppm NOx on Natural Gas
- ≤ 10 ppm CO on Natural Gas
- ≤ \$500/kW unit cost
- 11,000 hour maintenance interval
- 45,000 hour life





### AIMS Program

#### Subtask A Market Study

#### Onsite Energy/ GEPS

- Market Study

## Task 1 Technology Concepts

#### **GEGR**

- Thermal analysis of cycle
- Advanced technology screening

#### **GEGR/PSEC/GEIS**

- Control system definition

## Task 4 Laboratory Evaluation

#### **GEGR**

- Integration of developed components into the new system
- Evaluation of the system in a laboratory environment

# Task 5 Commercial Demonstration

#### **GEGR/ GEPS/ Site TBD**

- 4000 hour demonstration of developed microturbine system

## Task 2 Component Development

#### **GEGR/ Concepts NREC/ GEPS**

- Component development & testing

#### **GE Research/ Kyocera/ ORNL**

- Advanced material components
- Advanced material characterization
- Ceramic testing for database

#### **GEGR/ GEIS/ TurboGenset**

- Power electronics development
- High speed alternator development

## Task 3 Systems Design

#### **GEGR/ GEPS**

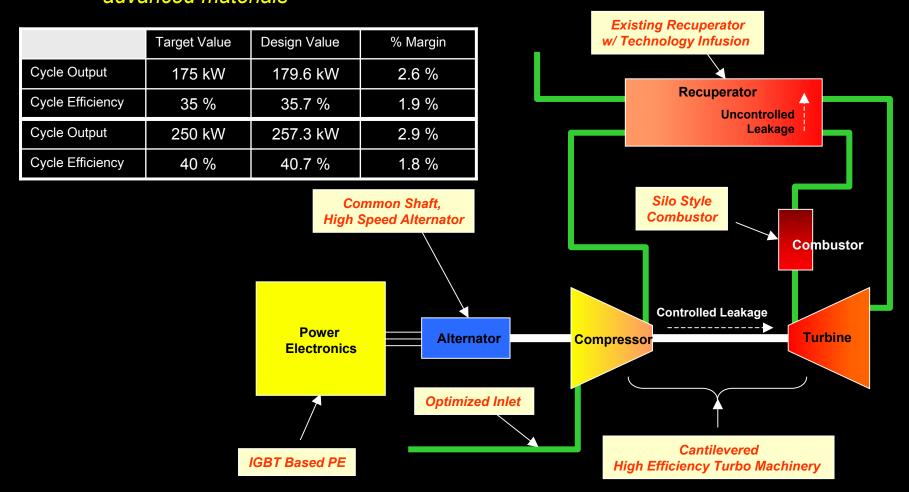
- System integration issues
- Acoustic considerations

#### **GEGR/ GEIS/ GEPS**

- Control system development

#### Subtask B Business Plan

#### **GEPS**

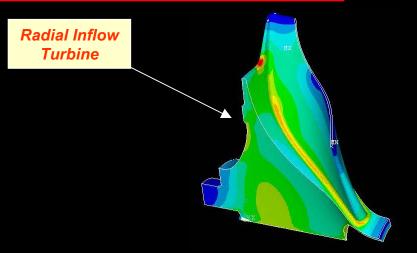

- Business plan based on market analysis, product feasibility and technology maturity

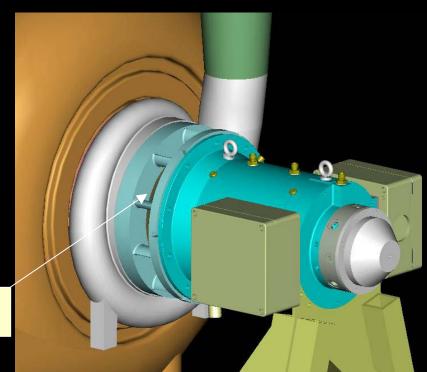


## Conceptual Design

### **TASK FOCUS:**

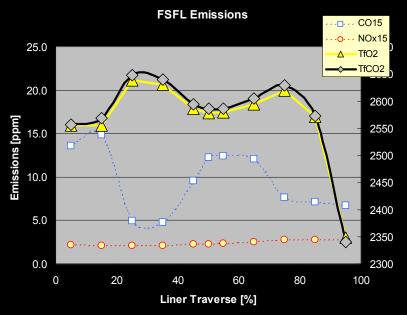
- Determine system thermal design to achieve the 40% efficiency target
- Reduce the operating temperature of the cycle to "metallic" levels
- this process allows for proof of component technologies prior to the introduction of advanced materials




## Turbomachinery

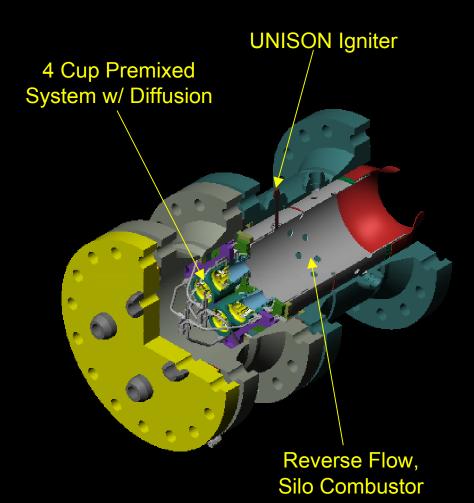
### **ACTIVITIES:**


- Component Design Targets Set
- 1D Analysis (Flow & Stress)
- Rotor Dynamic Analysis
- Materials Down Selection
- 1st Pass 3D Analysis (Flow & Stress)
- Analysis of Results
- Modifications/ Redesigns
- Stationary Component Design & Analysis
- Final 3D Analysis (Flow & Stress)
- Final Rotor Dynamic Analysis
- Hardware Procurement
  - Experimental Evaluation
  - Integration with MT System
  - Evaluation





Optimized Inflow Flow Geometry








## **Combustor Performance:**

NOx  $(15\% O_2) = 3.4 \text{ ppm}$ CO  $(15\% O_2) = 8.4 \text{ ppm}$ 

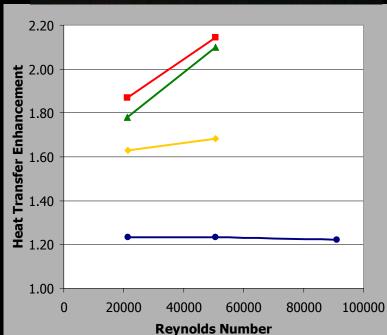




### **TASK FOCUS:**

Infuse GE expertise of gas turbine heat transfer into existing recuperator technology to build a better system.


### **ACTIVITIES:**


- Performance Design Targets Set
- Reverse Engineered Existing Recuperator Validated with Experiments
- Preliminary Sizing of Recuperator
- Potential Heat Transfer Enhancement Technologies Identified
- Design Impact of Technologies Determined
- Capable Vendors Identified
- Vendor Finalized
- Initial Hardware Procurement
- New Technology Design Incorporation
  - New Technology Sample Procurement
  - New Technology Sample Experimental Evaluation
  - New Technology Prototype Procurement
  - Experimental Evaluation

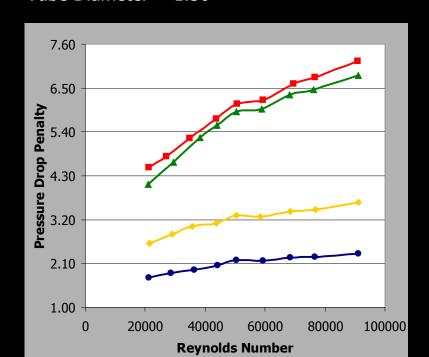




## Recuperator



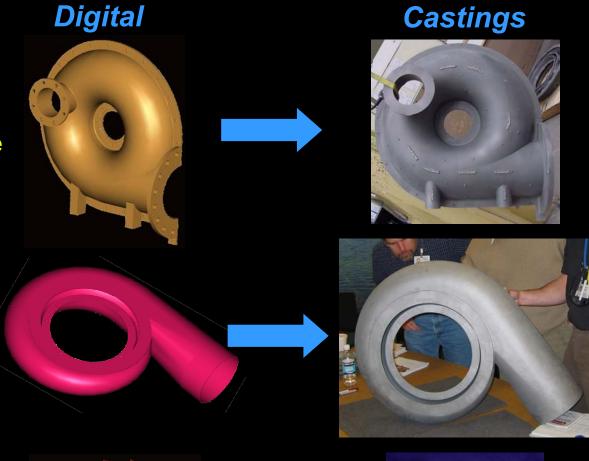



Tube 1: Depth = 0.08", Spacing = 0.523"

Tube 2: Depth = 0.16", Spacing = 0.4287"

Tube 3: Depth = 0.16", Spacing = 0.523"

Tube 4: Depth = 0.08", Spacing = 0.4287"


Dimple Diameter = 0.39" Tube Diameter = 1.50"





# Core Engine Hardware Procurement

- Complete Digital Design
- Optimizations performed at the system level
- Design transferred as a 3D object for casting
- Held reviews with all parties present (designer, casting vendor, machining vendor, welder, etc.)
- As-cast SLA finish and dimensions better than expected







# Core Engine Hardware Procurement



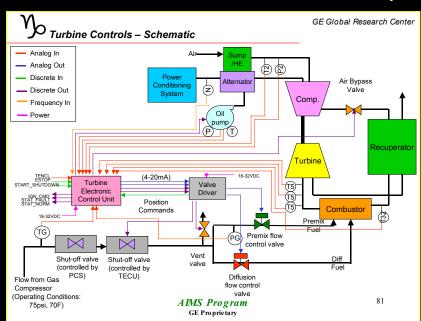


# Core Engine Hardware Procurement





### Hardware:

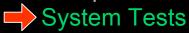

All hardware received and tested.

## Testing:

- Completed:
  - Sensors and Actuators
  - Combustion Testing for Fuel Schedules
- Planned:
  - Communication Test with Power Electronics



Woodward Valve Assembly

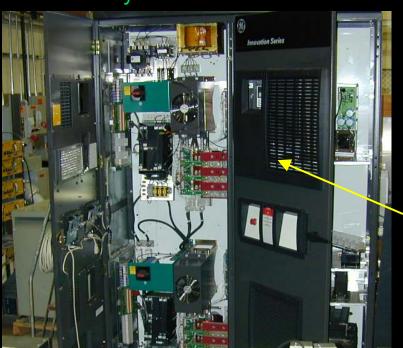





## Power Electronics

### PE ACTIVITIES:

- Specifications & Topology Tradeoffs
- Generator Vendor Selection
- Power Electronic Simulations
- Auxiliary System Design
- FMEA
- Component Fabrication




- Integration w/ Turbine System

## **CONTROLS ACTIVITIES:**

- Control Requirements
- System Simulations
- Platform Selection
- Algorithm & Code Development
- Communication & HMI Development
- Hardware Procurement





Cabinet for filters, controllers and Electrical BoP

- Design, Build, and Test a 175 kW Microturbine with an electrical efficiency of ~35%. Show the path required to reach 40%
- Large, multidisciplinary team leveraging GE technology from Industrial Systems, Aircraft Engines, and Power Systems
- On-time procurement of hardware from vendors can be a challenge for proto-type machines
- On schedule to begin testing system late summer 2003







